
Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

CS 581A3 Software Maintenance & Evolution
Spring 2018

Assignment 3: Software Quality & Code Smells

Contributions
We divided the work in such a way that each person gets to know both the software, and also gets an insight

into both the tasks (metrics and smells). Here is a breakup of the taks:

1.1 General Metric Changes
In this part of the assignment, we have determined how our code changes (in Assignment 2 for this course)

affected the code metrics for jEdit and PDFSam [1,2]. We have used the Metrics plugin in Eclipse to

calculate all the metrics [3].

Metrics Changes for jEdit
We computed all the metrics for the original version of jEdit and the modified version. We then compared

the results and found that the following metrics changed their values:

Metric jEdit Original jEdit Modified

Weighted methods per Class 23858 23860

Number of Children 459 465

Number of Methods 5854 5856

Number of Normal Methods 5313 5315

No of inherited methods 67814 67820

Total lines of code 121034 121042

Method lines of code 85940 85944

Class interface size 4875 4877

Number of Polymorphic Methods 257 260

Reasons for Changes:

From the table above, it can be seen that the number of methods has changed. This is because we had added

a couple of methods for implementing of the change requests. The two new methods we added were

disableScrollbar() and enableScrollbar(). These were added to the class

“org/gjt/sp/jedit/textarea/TextArea.java”

Figure 1 confirms that the change in the metrics originate from the addition of these two methods, where

we compare the number of methods metric for just the TextArea.java

Figure 1. Comparison of metrics (Number of Methods) for TextArea.java

Task jEdit PDFSam

Metrics Analysis Gururaj Abhimanyu

Smells Analysis Abhimanyu Gururaj

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Metrics Changes for PDFSam
For PDFSam the Metrics tool computes metrics for the individual modules. We would be focusing on the

four modules which we changed in some way or the other while in the process of accomplishing the change

requests in A2.

a) PDFSam-fx

Metric PDFSam-fx Original PDFSam-fx Modified

Weighted methods per Class 874 876

Number of Children 45 47

Number of Classes 185 187

Measure of Functional Abstraction 6 8

No of inherited methods 18981 19983

Total lines of code 7639 7653

Method lines of code 3300 3306

Reusability 93.846 94.832

Depth of Inheritance Tree 2.659 2.738

b) PDFSam-core

Metric PDFSam-core Original PDFSam-core Modified

McCabe Cyclomatic Complexity 1.104 1.116

Weighted methods per Class 597 605

Number of Static methods 30 31

Total lines of code 3719 3772

Method lines of code 1241 1287

Class Interface Size 430 431

c) PDFSam-alternate-mix

Metric PDFSam-alt-mix Original PDFSam-alt-mix Modified

McCabe Cyclomatic Complexity 1.231 1.385

Nested Block Depth 1.231 1.269

Weighted methods per Class 32 36

Total lines of code 353 368

Method lines of code 138 153

d) PDFSam-merge

Metric PDFSam-merge Original PDFSam-merge Modified

McCabe Cyclomatic Complexity 1.068 1.164

Nested Block Depth 1.068 1.109

Efferent Coupling 2.333 2.667

Instability 0.933 0.944

Normalized Distance 0.067 0.056

Depth of Inheritance Tree 2.778 2.7

Weighted methods per Class 47 64

Number of Overridden Methods 0 9

Number of Attributes 28 30

Number of Methods 41 50

Number of Normal Methods 41 48

Number of Inherited Methods 969 971

Specialization Index 0 0.2

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Specialization Index2 0 0.164

Number of Classes 9 10

Total lines of code 634 733

Method lines of code 290 328

Design Size in Classes 9 10

Average Number of Ancestors 2.778 2.7

Class Interface Size 29 38

Data Access Metric 5.571 6.571

Cohesion Among Methods 1.883 1.994

Reusability 5.636 6.475

Flexibility 0.183 0.189

Effectiveness 0.924 0.891

Extendibility 0.389 0.45

Understandability -5.813 -6.119

Reasons for Changes:

We observe that a lot of metrics have changed in the modified version. Since we added some methods, lines

of code in the code increased and metrics related to the number of methods, class interface size, number of

ancestors, inheritance etc., changed.

Apart from these, we also noticed some interesting changes in the metrics. Like the McCabe Cyclomatic

Complexity increased, though not substantially. This metric counts the number of flows through a piece of

code. Each time a branch occurs (owing to conditionals, loops, and logical operators in the methods) this

metric is incremented by one. Since we added and changed some methods, that changed the logical flow in

some of the classes. And thus, the McCabe Cyclomatic Complexity changed.

Another interesting change was the increase of Efferent Coupling in the “merge” module. This is because

some of our changes made code in this package access attributes from other packages. The increase in

Efferent Coupling led to the increase in Instability, since Instability metric is calculated as:

𝐼 = 𝐶𝑒 (𝐶𝑎 + 𝐶𝑒)⁄

Where Ce is the Efferent Coupling and Ca is Afferent Coupling. This is not a good sign, and suggests the

edits we made were not very professional. This was confirmed by changes in some other metrics, like

Effectiveness and Understandability, whose values went down in our modified version.

We also noticed some positive changes in the metrics for Reusability, Flexibility and Extendibility. It seems

since we added new functionality to the software, hence these metrics improved.

However, there were some metrics, like Specialization Index and Specialization Index2, for which we could

not come up with any reasoning explaining their change.

1.2 Coupling and cohesion

Cohesion
The Metrics plugin calculates the LCOM (Lack of Cohesion of Methods) values to measure the

cohesiveness of a class. It uses the Henderson-Sellers [4] revised method to calculate LCOM values.

According to the Henderson-Sellers method, LCOM is calculated as follows.

Let:

 M be the set of methods defined by the class

 F be the set of fields defined by the class

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

 MF number of class methods, which have access to a field

 Then:

𝐿𝐶𝑂𝑀 𝐻𝑆 =
1

𝑀 − 1
[𝑀 −

1

𝐹
∑ 𝑀𝐹

𝑛

𝑖=0

]

The LCOM HS metric indicates class associativity. In other words, it indicates whether all the methods of

a class of are using all the class fields. In the ideal case, all the class methods are using all its fields, and the

class is absolutely associated. In the case of absolute class connectedness, the LCOM HS value is 0. So, we

see that lower LCOM values are good, since a low “lack of cohesion” score implies a lot of cohesion. And

higher values are considered bad. The values of LCOM as per Henderson-Sellers method lie in the range

[0-2]. For Henderson-Sellers LCOM, values higher than 1 are generally considered to be alarming.

a) jEdit

Classes with Lowest Cohesion

In jEdit, we identified the following two classes with the lowest cohesion (i.e., highest values of

LCOM HS):

1) org.jedit.options.CombinedOptions

 LCOM value: 1.333

Reason: This class has 4 methods and only one of them uses the class attributes. Thus, it

demonstrates a very low cohesion.

2) org.gjt.sp.jedit.gui.DockableWindowManagerImpl

 LCOM value: 1

Reason: This class has 28 methods and 11 attributes, and not all methods use these

attributes. Most of its methods access attributes from other classes, 15 attributes from 5

external classes. Thus, this class also shows a low cohesion.

Classes with Highest Cohesion

In jEdit, we identified the following two classes with the highest cohesion (i.e., lowest values of

LCOM HS):

1) org.gjt.sp.jedit.gui.KeyEventWorkaround

LCOM value: 0

Reason: This class has 3 methods and 3 attributes. All the methods use all these attributes,

and do not access attributes from external classes.

2) org.gjt.sp.jedit.textarea.ElasticTabstopsTabExpander

LCOM value: 0

Reason: This class has 3 methods and just one attribute. All the methods use this attribute.

Thus, the class demonstrated a high degree of cohesion.

b) PDFSam

Classes with Lowest Cohesion

In PDFSam, we identified the following two classes with the lowest cohesion (i.e., highest values

of LCOM HS):

1) org.pdfsam.ui.selection.single.SingleSelectionPane

LCOM value = 0.906

Reason: This class has 18 methods and 14 attributes, but only 8 attributes are being used

by the 3 of the class methods. This is the reason for the low cohesion. This can be seen in

Figure 2, which is the cohesion perspective from the software inCode.

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

2) org.pdfsam.merge.MergeParametersBuilder

 LCOM value = 0.875

Reason: This class has 10 methods and 8 attributes, but only 3 attributes are being used by

the class methods. This shows a low cohesion.

Classes with Highest Cohesion

In PSDSam, we identified the following two classes with the highest cohesion (i.e., lowest values

of LCOM HS):

1) org.pdfsam.task.PdfRotationInput

LCOM value = 0.167

Reason: 4 of the 5 class methods access all the 3 attributes in this class. This shows a high

degree of cohesion.

Figure 2. Cohesion analysis of the class from inCode

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

2) org.pdfsam.ui.io.DestinationPane

LCOM value = 0.33

Reason: All the 4 methods of this class access the 2 attributes present in this class. This

class thus has a tight cohesion. inCode software also confirmed this, Figure 3.

Difference between Classes with Highest Cohesion and Classes with Lowest Cohesion

We observed that the classes with highest cohesion are small in size, have a few methods and a few

attributes, and most of the method pairs (almost all pairs) access a common attribute. But classes with

lowest cohesion are large, have many methods and many attributes. And only a few of these method pairs

access a common metric.

Coupling
The metrics plugin provides four metrics related to coupling. These are:

1) Afferent Coupling (avg/max per packageFragment)

The number of classes outside of the package, that depend on the classes of the current package.

High values of afferent coupling indicate that a given package is of high importance.

2) Efferent Coupling (avg/max per packageFragment)

The number of classes within the package that depend on classes outside the package. High values

of efferent coupling show how dependent the given package is on external packages.

3) Direct Class Coupling (avg/max per packageFragment)

The number of methods of a class that depend on methods outside of the class, grouped by

package.

4) Direct Class Coupling (avg/max per type)

The number of methods of a class that depend on methods outside of the class.

Figure 3. inCode overview for the class DestinationPane, shoing a tight cohesion

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

For an idea of coupling, Efferent Coupling would have been a good choice, but the metrics plugin calculates

this value for a package as a whole, rather than for individual classes. So, we cannot identify individual

classes with highest and lowest coupling using this metric. We thus use the last metric in the above list, i.e.,

Direct Class Coupling to identify classes with extreme coupling values.

a) jEdit

Classes with Highest Coupling

In jEdit, we identified the following two classes with the highest coupling

1) org.gjt.sp.jedit.textarea.TextArea

 Direct Class Coupling value = 20

Reason: Many of its methods access directly (or via getter/setters) 24 attributes from 12

external classes.

2) org.gjt.sp.jedit.View

 Direct Class Coupling value = 19

Reason: Many of its methods access directly (or via getter/setters) 108 attributes from 43

external classes

Classes with Lowest Coupling

In jEdit, we identified the following two classes with the lowest coupling:

1) org.gjt.sp.jedit.textarea.TextAreaMouseHandler

Direct Class Coupling value = 1

Reason: This class has 14 methods and only one of them accesses attributes from an

external class.

2) org.gjt.sp.jedit.JEditRegisterSaver

Direct Class Coupling value = 1

Reason: This class has 3 methods and just one of them accesses attributes from an external

class.

b) PDFSam

Classes with Highest Coupling

In PDFSam, we identified the following two classes with the highest coupling:

1) org.pdfsam.ui.selection.multiple.SelectionTable

Direct Class Coupling value = 9

Reason: 8 of the 22 methods of this class access attributes from external classes. This shows

a high degree of coupling, for PDFSam.

2) org.pdfsam.ui.notification.NotificationsController

 Direct Class Coupling value = 9

Reason: 5 of the 10 class methods access attributes from external classes. We can see this

from Figure 4, which shows how the class is accessing elements from external classes.

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Classes with Lowest Coupling

In PSDSam, we identified the following two classes with the lowest coupling:

1) org.pdfsam.ui.selection.multiple.ReverseColumn

Direct Class Coupling value = 0

Reason: None of the class’s methods access external classes.

2) org.pdfsam.alternatemix.AlternateMixParametersBuilder

Direct Class Coupling value = 0

Reason: None of the class’s methods access external classes.

Difference between Classes with Highest Coupling and Classes with Lowest Coupling

We observed that classes with the highest coupling are generally large, have many methods and

many attributes, and implement a complex or diverse functionality. Thus, they need to access

elements from other classes or packages. Whereas classes with the lowest coupling are small in

size, have a few methods and a few attributes, and implement a very simple or “one-task”

functionality. They, thus, do not need to access other classes.

Figure 4. inCode analysis of the class NotificationsController

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Figure 5. Methods and Attributes of the class TextArea in jEdit

2.1 Detecting and analyzing code smells
In this part we used the modified versions of the projects jEdit and PDFsam from assignment 2. We

completed the detection and analysis of code smell using a couple of tool called JDeodorant and iPlasma

[5] [6]. JDeodorant is an Eclipse plugin available for free that detects five types of bad smells. The iPlasma

tool is an integrated platform/tool for quality assessment of object-oriented systems that works with

multiple languages [7]. As compared to JDeodorant, iPlasma is able to detect several code smells called

disharmonies, which are classified in identity disharmonies, collaboration disharmonies, and classification

disharmonies. We also tried some other tools such as inCode. InCode works fine with modified PDFSam

because the total number of lines are less than 100000 which is the set limit on the free version of this

software, but this is not the case with jEdit. Unfortunately, the licensed version is not available anywhere

over the web so that we can uses it for jEdit.

Analysis of JEdit

Smelly Class: class public org.gjt.sp.jedit.textarea.TextArea

Which Bad Smell? -> God Class

In JEdit, this class represents an Abstract TextArea component. JEdit uses a concrete instance of this class

called the JEditTextArea. This class has a very large number of methods and attributes (Figure 5), and only

second to another class called Parser.java which has the highest number of methods and attributes

when the JEdit codebase is considered as a whole.

1. Briefly describe the smell by considering the class, methods, attributes, etc. involved in the smell.

It is a good object-oriented design practice to distribute the intelligence of a system uniformly

among the top-level classes. Conversely, the God Class bad smell refers to classes that tend to

centralize code base and therefore the intelligence of the system into a few large classes. From the

class-interaction diagram (Figure 6), we observe that this class performs significantly large amount

of work and delegates small work to other classes. It also uses data from other classes as represented

by red lines. This aligns with the definition of a God class.

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Figure 6. Class interaction and blue print for the TextArea class in jEdit

Figure 7. JDeodorant's analysis of the TextArea class

2. Explain why the class/method is flagged as smelly (be specific).

This class is a huge class in terms of number of methods, attributes, and lines of code. This class

has 270 methods and 62 attributes. The total number of lines in this class are 6762. According to

the authors, "This class uses a minimal set of jEdit APIs because it is the base class of the

JEditEmbeddedTextArea and StandaloneTextArea, so it needs to be embeddable and

separable," however, this class still has a large number of methods and attributes (explained in brief

in answer 3). Therefore, this class is flagged as one of the God classes by both iPlasma and

JDeodorant while analyzing the JEdit source code. JDeodorant’s analysis for this class is shown in

Figure 7.

3. Do you agree that the detected smell is an actual smell? Justify your answer.

Yes, we agree with the results from the tools that this is a God Class. As per the definition of the

God Class, it performs too much work on its own and delegates only minor work to other classes.

It also uses the data from other classes, for example, attributes of class instance JEditBuffer

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

buffer. As we went through this class using Eclispe, we found that TextArea functionalities such

as goToPrevLine, scrollUpPage, deleteParagraph, showPopupMenu, and

many more, are implemented in this class. All these methods have very little in common to be

placed in one class because they represent different parts of the TextArea of JEdit. This class has

270 methods and 62 attributes which is beyond the threshold for being a God Class. Therefore, we

can confirm that this is actually a God Class. Jdeodorant suggests some refactorings to get rid of

this smell. These are shown in Figure 8.

Figure 8. Suggested Refactoring Operations from JDeodorant for the TextArea Class

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Smelly Class: class public org.gjt.sp.jedit.print.PrintPreviewModel

Which Bad Smell? -> Data Class

In JEdit, this class is a data model for the print preview pane and it contains only setter and getter methods

for the print preview display of JEdit.

1. Briefly describe the smell by considering the class, methods, attributes, etc. involved in the smell.

The bad smell - Data class - refers to a “dumb” data holder class that does not have any complex

functionality, however, other classes strongly rely on it. These classes exhibit a poor object-oriented

design because they lack the principle of encapsulation of data and lack the data-functionality

proximity. The PrintPreviewModel class mentioned above has the symptoms of a Data Class.

In Figure 9, we see that the methods in this class are mostly getter and setter type of methods that

retrieve or change the values of attributes listed on the right side of the figure. These methods do

not have significant functionalities, which aligns with the definition of a Data Class.

Figure 9. Details for the class PrintPreviewModel in jEdit

2. Explain why the class/method is flagged as smelly (be specific).

This class is a lightweight class that provides almost no functionality through its methods. The

methods in this class are either getters or setters for the attributes of the class, for example,
getPageNumber(), setPageNumber(), getPageRanges(), setPageRanges(),

etc. that modify or access attributes like pageNumber or pageRange. Therefore, according to

the definition mentioned above, this class was flagged as a Data Class by both iPlasma and

JDeodorant tool.

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

3. Do you agree that the detected smell is an actual smell? Justify your answer.

Yes. As we analyzed this class in Eclipse IDE, we observed that the methods in this class had no

real functionality because most of them were either getX() or setX() type methods that operated on

the attributes such as View, Buffer, pageNumber, zoomLevel, etc. This class violates

the object-oriented design principle of encapsulation and therefore it is a Data Class.

Smelly Method:

private int TextAreaMouseHandler::getSelectionPivotCaret()

Which Bad Smell? -> Feature Envy

We detected this method, which is an example of Feature Envy bad smell, in both the tools - JDeodorant

and iPlasma.

1. Briefly describe the smell by considering the class, methods, attributes, etc. involved in the smell.

The Feature Envy bad smell refers to methods that are more interested in the data and attributes of

other classes than that of their own class. These methods are symptoms of a bad design because

they access directly or indirectly (via accessors) the data of other classes. For a good object-oriented

design, the data and the methods modifying that data should stay as close together as possible. The

getSelectionPivotCaret() method accesses data from classes other than its own class. This

might be a sign that this method might have be misplaced and it should be moved to the class,

attributes of which this method accesses.

Figure 10. Details of the method exhibiting the FeatureEnvy smell

2. Explain why the class/method is flagged as smelly (be specific).

The getSelectionPivotCaret() method accesses data from an instance (textArea) of

another class called TextArea in the line "int caret = textArea.caret;". Here, the

caret attribute of the class instance TextArea textArea is accessed by this method. Similarly,

the other variable "Selection s" defined in this method is also an attribute of the class instance

TextArea textArea. Instead of using the attributes and data from the own class

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

(TextAreaMouseHandler), the method is accessing data from other classes. Therefore, by

definition this is an example of Feature Envy bad smell.

Figure 11. JDeodorant's analysis for the TextAreaMouse::getSelectionPivotCaret method

3. Do you agree that the detected smell is an actual smell? Justify your answer.

Yes, we agree with the detected Feature Envy smell for this method. Reason being, this method has

only two defined variables (int caret and Selection s) that were initialized with the

data from classes other than the own class of this method. This method (a really short method with

only 6 lines of code) does not have any operations that directly work on the attributes of the own

class (TextAreaMouseHandle). Therefore, this method is evidently an example of Feature

Envy bad smell.

Analysis of PDFSam

Analysis of PDFSam using both the smell detecting tools (JDeodorant and iPlasma) revealed that the master

branch (v.3.3.5) was written really well in terms of good object-oriented design. PDFSam code base has

very few structural design issues that were uncovered by the smells described below. JDeodorant was only

able to detect the classes exhibiting Feature Envy bad smell out of the five smells it offered to detect.

Therefore, we used iPlasma to detect some more smells. The iPlasma software detected a few Data Class

bad smells and just one example of Shotgun Surgery bad smell. Again, because of modular and object-

oriented design of the original master branch and the modified branch (from assignment 2), there were only

three types of bad smells detected in the entire code base using the two tools mentioned above.

Smelly Class:

class org.pdfsam.ui.selection.multiple.move.SingleSelectionAndFocus

Which Bad Smell? -> Data Class

This class is a part of the PDF Split And Merge source code of PDFSam and provides a data model for

the Split And Merge module.

1. Briefly describe the smell by considering the class, methods, attributes, etc. involved in the smell.

Data class is a bad smell that refers to a “dumb” data holder class that does not have any complex

functionality, however, other classes strongly rely on them. They exhibit a poor object-oriented

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

design because they lack the principle of encapsulation of data and lack the data-functionality

proximity. The SingleSelectionAndFocus class has the symptoms of a Data Class. From

Figure 12, we see that the methods in this class are all getter type of methods that retrieve the data

from the attribute (only one: int row) listed on the right side of the figure. These getter methods

do not have significant functionalities, which aligns with the definition of a Data Class.

2. Explain why the class/method is flagged as smelly (be specific).

This class is very small class containing getter methods that provide almost no functionality. Three

getter methods in this class are public accessor getFocus(), public accessor

getRow(), and public accessor getRows(). They modify or access the only attribute

in the class which is 'int row'. Therefore, by the definition of a Data Class, this class was flagged

as a Data Class by iPlasma and JDeodorant tools.

Figure 12. Details for the class SingleSelectionAndFocus in PDFSam

3. Do you agree that the detected smell is an actual smell? Justify your answer.

Yes, we agree that this is a Data Class. Our analysis of this class in Eclipse IDE confirmed that

these getter methods in have no real functionality because they operated on the attribute (int row)

and returned the row immediately. This class violates the object-oriented principle of encapsulation

and lacks the data-functionality proximity; therefore, it is a Data Class.

Smelly Method: public void NotificationsController::

onAddRequest(AddNotificationRequestEvent event)

Which Bad Smell? -> Feature Envy

This method which is an example of Feature Envy bad smell was detected in both the tools, JDeodorant

and iPlasma.

1. Briefly describe the smell by considering the class, methods, attributes, etc. involved in the smell.

Methods that are more interested in the data and attributes of other classes than that of their own

class exhibit the Feature Envy bad smell. These methods are symptoms of a bad design because

they access directly or indirectly (via accessors) the data of other classes. The

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

onAddRequest(AddNotificationRequestEvent event) method accesses more data

from classes other than its own class (public class NotificationsController{}).

This might be a sign that this method might have been misplaced and it should be moved to the

class, attributes of which this method accesses. For a good object-oriented design, the data and the

methods modifying that data should stay as close together as possible.

Figure 13. Analysis from iPlasma for the NotificationsController::onAddRequest method

2. Explain why the class/method is flagged as smelly (be specific).

The onAddRequest(AddNotificationRequestEvent event) method accesses only

1 out of 6 local attributes as we see in Figure 13. The only local attribute accessed by this method

is "private NotificationsContainer container". This method accesses data from

an instance (event) of another class called AddNotificationRequestEvent (incidentally

it's a Data Class). The attributes such as event.title, event.message, and

event.type of the class instance AddNotificationRequestEvent event are accessed

by this method. Instead of using the attributes and data from the own class

(NotificationsController), this method is accessing data from other classes. Therefore,

by definition this is an example of Feature Envy bad smell.

3. Do you agree that the detected smell is an actual smell? Justify your answer.

Yes, we agree with the detected Feature Envy smell for this method, because this method uses only

one local attribute (private NotificationsContainer container) out of 6 local

attributes. The other attributes on which this short method (of only one line) operates are event.title,

event.message, and event.type. These attributes represent the data from other class than the own-

class of this method. Therefore, this method is evidently an example of Feature Envy bad smell.

Smelly Method:

public String Pdfsam::property(ConfigurableProperty prop)

Which Bad Smell? -> Shotgun Surgery

This method was detected using iPlasma software and it is the only example of Shotgun surgery bad smell

from the entire code base.

1. Briefly describe the smell by considering the class, methods, attributes, etc. involved in the smell.

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

A method demonstrates Shotgun Surgery bad smell if a change in that method requires cascading

changes (small but many) in several related methods or classes. The changes are required to be

made all over the place in the codebase, they are hard to find and maintain, therefore the method

should be refactored so that the changes are limited to a single class.

The method property(ConfigurableProperty prop) from the interface public

interface Pdfsam {} is detected as a Shotgun Surgery bad smell. This class interface keeps

all the information about the current running version of PDFsam. The

ConfigurableProperty prop could be any property such as project version, build date,

license URL, homepage URL, download URL, etc.

Figure 14. iPlasma tool showing the method marked as having Shotgun Surgery smell

2. Explain why the class/method is flagged as smelly (be specific).

The property(ConfigurableProperty prop) method is written inside an interface

called public interface Pdfsam {}. This interface allows implementing a class that

keeps information about the version of PDFSam software. This method is flagged as a Shotgun

Surgery because whenever someone changes the method inside this interface, they need make

changes at all the places in the codebase where the interface was implemented into a class. In this

way, a small change in the method from the interface leads to a large number of small changes in

the classes where this interface was implemented.

3. Do you agree that the detected smell is an actual smell? Justify your answer.

We partially agree with this method being flagged as a Shotgun Surgery. It is correct that if we

change the method to say public Char[]

Pdfsam::property(ConfigurableProperty prop), which returns char array instead

of a string, then we also need to make changes in places where the interface was implemented and

the method was used. So, by definition of a Shotgun Surgery code smell, this is technically a bad

smelling method. However, we do not completely agree because, there is close to zero probability

that someone or authors themselves will change this top-level interface in the PDFSam codebase.

Also, it does not make sense to change the method to return anything else other than a String or

input anything other than a ConfigurableProperty prop type input. Therefore, even though this is

flagged as a bad smell, we think that this is not an issue in terms of a good object-oriented design

practice.

Assignment 3 CS581A3 Abhimanyu Chawla and Gururaj Mulay

References
[1] https://github.com/abchawla/cs581A3-f18-a2-gitrams-jedit

[2] https://github.com/abchawla/cs581A3-f18-a2-gitrams-pdfsam

[3] Eclipse Metrics plugin 1.3.8: http://metrics2.sourceforge.net/

[4] Henderson-Sellers, Brian et al. “Coupling and cohesion (towards a valid metrics suite for object-

oriented analysis and design).” Object Oriented Systems 3 (1996): 143-158.

[5] https://users.encs.concordia.ca/~nikolaos/jdeodorant/

[6] http://loose.upt.ro/reengineering/research/iplasma

[7] Fontana Francesca et al. “An experience report on using code smells detection tools.” Fourth

International Conference on Software Testing, Verification and Validation Workshops (2011).

[8] Lanza, Michele, and Radu Marinescu. Object-oriented metrics in practice: using software metrics

to characterize, evaluate, and improve the design of object-oriented systems. Springer Science &

Business Media (2007).

http://metrics2.sourceforge.net/

