
Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

CS 581A3 Software Maintenance & Evolution
Spring 2018

Assignment 4: Refactoring OSS

Contributions
We divided the work in such a way that each person gets to know both the software and gets a feel of both

types of refactoring (manual and automated). Here is a breakup of the tasks:

1.1 jEdit
In this part of the assignment, we have performed refactoring operations on the smelly code which we had

identified in the previous assignment.

Automated Refactoring for jEdit
For the automated refactoring, we have used either the suggestions from Eclipse plugins like JDeodorant

or Eclipse’s own refactoring tools.

1. Smell: God Class
We had identified the class “org/gjt/sp/jedit/textarea/TextArea.java” inflicted with God

Class smell. This class has 270 methods and 62 attributes and thus is a very large class.

Refactoring Details: In this refactoring, we have used the suggested refactoring operations from the

JDeodorant plugin in Eclipse to get rid of this smell. The refactoring took a bunch of methods from the

TextArea class and carved out new classes with those methods. This reduced the size of the TextArea

Task jEdit PDFSam

Automated Refactoring Abhimanyu Gururaj

Manual Refactoring Gururaj Abhimanyu

Figure 1. Extracted class suggestion from Automated Refactoring of a God Class

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

class and got rid of the God Class smell. Figure 1 shows one of the extracted classes
TextAreaInitInputHandlerProduct.java

For this refactoring we did not have to make any additional changes other than those performed by

JDeodorant.

Rationale: The class TextArea has 270 methods in the original codebase, and as per the definition of a God

Class, this class is a God Class. Therefore, we have chosen to refactor this class by extracting classes with

some of the methods of the original class while keeping the behavior unchanged.

2. Smell: Feature Envy
The getSelectionPivotCaret method in the class

“org/gjt/sp/jedit/textarea/TextAreaMouseHandler.java” was identified as having

Feature Envy bad smell.

Refactoring Details: In this case also, we have used the refactoring operations from JDeodorant.

Figure 2. Feature Envy smell detected by JDeodorant

Figure 2 shows the Feature Envy smell in the class TextAreaMouseHandler and JDeodorant suggests

moving the culprit method getSelectionPivotCaret to the class TextArea.

Figure 3. Suggested refactoring from JDeodorant

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

After performing the suggested refactoring, and running JDeodorant again, we observed that the Feature

Envy smell got eliminated. We did not have to make any changes do manually, apart from the changes

performed with JDeodorant’s support.

Rationale: The method uses attributes of the class TextArea and does not use any attributes from its own

class. This indicates that this method should be moved to the TextArea.java class. Therefore, we decided

to move this method to the TextArea.java class to get rid of the Feature Envy bad smell.

Manual Refactoring for jEdit
In manual refactoring process, we analyzed the code with a careful consideration to the bad smells and then

removed the bad smells by manually refactoring the necessary parts without using any plugins or Eclipse’s

tools.

1. Smell: God Class
We identified the class “org/gjt/sp/util/StringModel.java” inflicted with God Class bad

smell. This is a God Class because it tends to centralize code base and therefore the intelligence of the

software into a single class. This class has 5 methods which perform too much of work on their own causing

it to be a God Class.

Figure 4. God Class smell detected by JDeodorant

Refactoring Details: We used extract class approach to extract some of the methods from this large class

to another newly created class called “org/gjt/sp/util/StringModelExtracted.java”. This

new class contains two extracted methods from the original class

“org/gjt/sp/util/StringModel.java”.

This extracted class performs the same functionality as the original class through following methods:

public void removeTextListener(TextListener textl)

public void fireTextChanged(StringModel stringModel)

Therefore, this refactoring operation delegates some of the work of the original class to the newly created

class while keeping the behavior of the software unchanged. This removed the God Class bad smell from

this class.

Rationale: The class StringModel has 5 methods in the original codebase. According to the definition

of a God Class, this number constitutes to make it a God Class. Therefore, we decided to create another

class that extracts some methods while keeping the behavior unchanged. We extracted two methods into

the new class as described above and added one more method public

LinkedList<TextListener> getListeners().

Manual Changes: 1. Created a new class StringModelExtracted.java

2. Extracted method into extracted class

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

3. Created an instance of this extracted class in the original class StringModel and called the methods

of this instance in place of the corresponding original methods.

2. Smell: Feature Envy
The method public String getCurrentEditMode() from the class

“org/gjt/sp/jedit/gui/DockingLayoutManager.java” was identified to exhibit Feature

Envy bad smell because the method behaves as if it is more interested in the data and attributes of other

classes than that of their own class. In this case, the other class is View.java. This method uses the Buffer

attribute (Buffer buffer = view.getBuffer()) of the view instance of the View.java class.

Figure 5. Feature Envy smell detected by JDeodorant

Refactoring Details: We decided to move/relocate method approach to relocate the method

getCurrentEditMode()to the View.java class because this method uses attributes of the View.java

class. Therefore, relocating this method does not change the functionality and behavior of the software

while removing Feature Envy bad smell.

Rationale: This method uses attributes of the class View.java and does not use any attributes from its own

class. This is a sign that this method might have be misplaced and it should be moved to the View.java

class, attributes of which this method accesses. Therefore, we decided to move this method to View.java to

get rid of the Feature Envy bad smell.

Manual Changes: 1. Removed the method private String getCurrentEditMode(View view)

from the class DockingLayoutManager.java and added it to class View.java as public

String getCurrentEditMode().

2. Changed the String mode attribute in the method public static void

loadCurrentModeLayout(View view) from String mode =

instance.getCurrentEditMode(view) to String mode =

view.getCurrentEditMode() to reflect the relocated method.

1.2 PDFSam

Automated Refactoring for PDFSam
For the automated refactoring, we have used either the suggestions from Eclipse plugins like JDeodorant

or Eclipse’s own refactoring tools.

1. Smell: God Class
We observed that the class “pdfsam-

fx/src/main/java/org/pdfsam/ui/selection/multiple/SelectionChangedEven

t.java” is inflicted with the God Class smell. This class has 7 methods and is a very large class.

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Figure 6. God Class smell detected by JDeodorant

Refactoring Details: In this refactoring, we have used the suggested refactoring operations from the

JDeodorant plugin in Eclipse to get rid of this smell. In this refactoring operation some of the methods were

extracted to a new class, SelectionChangedEventProduct.java

We did not have to make any changes do manually, apart from the changes performed with JDeodorant’s

support.

Rationale: The class SelectionChangedEvent has 7 methods in the original codebase, and it

classifies as a God Class. Therefore, we have chosen to refactor this class by extracting some functionality

out of this class as an extracted class.

2. Smell: Type Checking
The class “pdfsam-

fx/src/main/java/org/pdfsam/ui/selection/multiple/SelectionChangedEven

tProduct.java” was identified as having the Type Checking code smell. In this case also, we have

used the refactoring operationcs from JDeodorant.

Figure 7. Type Checking smell detected by JDeodorant

Refactoring Details: In this refactoring, we have used the suggested refactoring operations from the

JDeodorant plugin in Eclipse to get rid of this smell. In this refactoring operation the switch case method

in the class has been extracted as a bunch of classes according to the clauses in the switch-case statements.

The classes have been named after the switch-case statements, Top.java, Bottom.java,

Down.java and Type.java.

For this refactoring we did not have to make any additional changes other than those performed by

JDeodorant.

Rationale: The class SelectionChangedEventProduct has a switch-case method, which may

cause code duplication if similar switch case statements are found elsewhere in the code base. And also, if

one changes or adds a switch-case clause, one has to do the similar change everywhere else, which makes

maintaining code very difficult. Therefore, we have chosen to refactor this class by extracting the switch-

case method in separate classes. Now if any class needs this switch-case block it can simply call the methods

from these newly extracted classes.

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Manual Refactoring for PDFSam
In manual refactoring process, we analyzed the code with a careful consideration to the bad smells and then

removed the bad smells by manually refactoring the necessary parts without using any plugins such as

JDeodorant or Eclipse’s tools.

1. Smell: God Class
The class pdfsam-gui/src/main/java/org/pdfsam/WindowStatusController.java

shows a God Class bad smell. This is a God Class because it tends to centralize a lot of code work in a

single class. This class has 6 methods that perform too much of work on their own causing it to be a God

Class.

Figure 8. God Class smell detected by JDeodorant

Refactoring Details: For this case as well, we used extract class approach to extract some of the methods

from this large class to another newly created class that we named “pdfsam-

gui/src/main/java/org/pdfsam/WindowStatusControllerExtracted.java”. This

new class contains four extracted methods from the original class “pdfsam-

gui/src/main/java/org/pdfsam/WindowStatusController.java”.

This extracted class performs the same functionality as the original class through following methods:

public void defaultStageStatus()

public void setStage(Stage stage, WindowStatusController

windowStatusController)

public boolean isNotMac()

public void restore(StageStatus latestStageStatus)

Therefore, this refactoring operation delegates some of the work of the original class to the newly created

class while keeping the behavior of the software unchanged. This removed the God Class bad smell from

this class.

Rationale: The class WindowStatusController.java has 6 methods in the original codebase.

According to the definition of a God Class, this number constitutes to make it a God Class. Therefore, we

decided to create another class that extracts some methods while keeping the behavior unchanged. We

extracted 3 methods into the new class as described above.

Manual Changes:

 1. Created a new class WindowStatusControllerExtracted.java.

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

2. Extracted four methods into extracted class.

3. Created an instance of this extracted class in the original class WindowStatusController.java

and called the methods of this instance in place of the corresponding original methods.

2. Smell: Long Method
The method private void initTopSectionContextMenu(ContextMenu

contextMenu, boolean hasRanges) in the class “pdfsam-

fx/src/main/java/org/pdfsam/ui/selection/multiple/SelectionTable.java”

shows Long Method bad smell because it has 20 lines of code. So, we removed this bad smell by creating

another method in the same class that performs a part of the task that this method does.

Figure 9. Refactoring done to get rid of Long Method

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

Refactoring Details: To remove the long method bad smell, we create a method named as public void

hasRangesMethod(ContextMenu contextMenu) in the same class. Functionality of this newly

created method is to perform steps such as calculate setPageRangesItem, etc if the hasRages flag

is true. This new method contains 10 lines of code and reduces the original number of lines in the long

method to half.

Rationale: The method initTopSectionContextMenu contains 10 lines of code which is more

than the threshold for a method to be a long method. Therefore, we decided to split the functionality of

this method into two methods while keeping its overall behavior the same. We identified a conditional

statement that contained major functionality of the original method. Therefore, we created another

method that performed this conditional functionality given the attributes ContextMenu

contextMenu.

Manual Changes: 1. Identify the part of the code that can be used to create another method.

2. Create a method called hasRangesMethod() that performs the conditional part of the original

method.

3. Refactored the original method so that it calls this new method where the conditional part of the

method was located before.

Testing:

For this assignment we have employed manual testing for both JEdit and PDFSam.

JEdit

Steps we followed:

1. Before refactoring, we built and ran the software. JEdit has some built-in tests which are run during

the ant build. We noted the number of tests passed and total number of tests.

2. Opened a text file and used the software.

3. Identified the code to be refactored and performed the refactoring described in the previous section.

4. After refactoring, we again built and ran the software. We noted any build errors, and the number

of built-in tests passed.

5. Opened the same text file and used the software to verify correct functionality.

6. As shown in Figure 10, there was no test case failed after refactoring, confirming correct behavior.

Figure 10. Built-in tests for JEdit, showing all tests passed

PDFSam

Steps we followed:

1. Before refactoring, we built the software, making sure the tests option is selected in the Maven

build. PDFSam has a full-featured test suite which tests the functionality during the build. We noted

the number of tests passed and the total number of tests.

Assignment 4 CS581A3 Abhimanyu Chawla and Gururaj Mulay

2. Ran the software and opened up a couple of PDF files. We performed some tasks with these PDF

files like merging etc.

3. Identified the code to be refactored and performed the refactoring as described in the previous

sections.

4. After refactoring, we built the software again. We tracked any build errors, and observed if any test

failed during the build.

5. Opened the same PDF files as before and performed the exact same task, like merging. We carefully

observed if there is any change in the behavior, and found that all the tests passed and the software

behaved the same way as it did before refactoring.

Manual vs. Automatic Refactoring:

For this assignment we performed both automated and manual refactoring. For automated refactoring we

mostly used the Eclipse plugin JDeodorant. We found that doing automated refactoring was quite easy. It

was as easy as clicking some buttons. All the intricate details of method names, class names, etc. are handled

by the tool. We do not have to worry whether we have made all the required changes at every place in the

entire codebase.

However, in the case of manual refactoring, we felt that it is a bit difficult to keep a track of all the changes

that need to be done. And one must do the necessary import statements if needed. In case of small

refactorings, it is not very difficult to do all the changes manually, but for large and complex refactorings

the whole process becomes tough to manage.

On the other side, the manual refactoring has its benefits too. It allows a finer control over what is being

changed and where. This could help in making sure that the refactored code is optimized and does not affect

performance. And in some cases where tools do not offer any refactoring suggestions, it might be still

possible to perform refactoring if we do it manually.

