
Change request log

1. Team
gitrams

2. Change Request

Change Request ID: #3 (PDFsam)

Description of the change request: The Merge module throws an exception upon attempting to merge page

ranges that intersect. You are requested to fix this issue by allowing intersection of ranges during the

merging operation.

3. Concept Location

• IDE Features used: InstaSearch for searching the relevant keywords such as ‘Merge’ that would

lead us to functionality where merging was implemented.

• Queries used when searching: ‘Merge’

• Interactions with the system: Merge page of PDFsam

• Classes visited: MergeModule, MergeOptionsPane, MergeParametersBuilder,

MergeSelectionPane, ConversionUtils

• Approaches: We tried to implement this change request using two approaches. Finally, only one of

them was found to work.

• The first class found to be changed (this is when concept location ends): ConversionUtils

Step # Description Rationale

1 We compiled and ran the version of PDFsam

from change request 1.

To work on latest version of PDFsam.

2 We interacted with merge function of PDFsam

to understand the basic features that did the

merging given a set of page ranges.

To get familiar with the existing features of

merge module, that helped us understand

how merging is implemented. We identified

the elements we had to change and add to

implement the change request.

3 We identified two approaches that could solve

the error that was caused when we called

merge module with overlapping page ranges.

We wanted to explore all possible ways to

implement this change request.

4 We searched for "merge" using the

InstaSearch plugin installed in Eclipse

Oxygen2.

To find all modules that possibly implemented

the merge functionality

5 From over 5 results outputted, we explored

following classes MergeModule,
MergeOptionsPane,

MergeParametersBuilder,

MergeSelectionPane, ConversionUtils

6 For approach 1: We found that the error was

thrown in the imported module
'org.sejda.model.input.PdfMergeInput'

We wanted to see if following this approach

will make it easier to implement the change

request.

7 For approach 2: We found that the ranges we

passed to the PdfMergeInput module after

performing preprocessing under
ConversionUtils module.

We wanted to see if following this approach

will make it easier to implement the change

request.

8 For approach 1: We decided to extend the
org.sejda.model.input.PdfMergeInput

Approach 1 had fewer changes as compared

to approach 2.

class in the merge package as
PdfMergeInputMod This seemed easier

because we just had to remove the

@NoIntersections check from this module.

9 For approach 2: We had to add a method in

ConversionUtils that will remove the

overlapping pages before passing the page

ranges to PdfMergeInput module

Approach 2 had more changes as compared

to approach 1

 Time spent (in minutes): 250

4. Impact Analysis
Use the table below to describe each step you follow when performing impact analysis for this change

request. Include as many details as possible, including why classes are visited or why they are discarded

from the estimated impact set.

Do not take the impact analysis of your changes lightly. Remember that any small change in the code could

lead to large changes in the behavior of the system. Follow the impact analysis process covered in the class.

Describe in details how you followed this process in the change request log. Provide details on how and why

you finished the impact analysis process.

Following impact analysis is for approach 2 that worked and solved the error because of overlapping page

range sets.

Step # Description Rationale

1 The class ConversionUtils from

org.pdfsam.support.params module was a

standalone class in the context of merge

module.

We verified this using the UML diagram for the

classes ConversionUtils and the modules

org.pdfsam.support.params and

org.pdfsam.merge.

2 Adding a method public static

Set<PageRange>

toNewPageRangeSet(Set<PageRange>

pageRangeSet) did not impact any other

methods in the same class as well as any other

classes from the merge modules that basically

implemented the merging part where error

occurred.

Except the newly added method lead to change

one line in the original method public static
Set<PageRange> toPageRangeSet(String

selection) throws ConversionException

from the class ConversionUtils.

This newly implemented method just changed

the returned page range set form the original

method mentioned on the left.

 Time spent (in minutes): 100

5. Prefactoring (optional)

For this change request we did not require to prefactor any part of the code base because the merge

functionality was already implemented in modular way.

Time spent (in minutes): 0

6. Actualization
For actualization we tried two approaches, out of which only approach 2 mentioned above worked. So, the

following table describes actualization phase for approach 2.

Step # Description Rationale

1 For approach 2, we added a method in

ConversionUtils that will remove the

overlapping pages rage sets before passing

the page ranges to PdfMergeInput module

We were sure that approach 2 was definitely

going to work, so we tried approach 1 first

but that ended up failing.

2 The newly added method is:
public static Set<PageRange>

toNewPageRangeSet(Set<PageRange>

pageRangeSet)

This method, takes the overlapping page

rages and removes the overlap. It returns a

non-overlapping page rage set that will

contain all the pages that the user has

inputted in the merge module of the GUI.

This method will remove the overlaps that

caused the error in
org.sejda.model.input.PdfMergeInput

module

3 We tested these changes after building and

running the PDFsam software again.

The change request was successfully

implemented.

Time spent (in minutes): 150

7. Postfactoring (optional)

For this change request we did not require to postfactor any part of the code base except for adding a few

comments.

Step # Description Rationale

1 Added comments regarding the modified merge

functionality that was implemented using

approach 2 mentioned above.

We wanted to keep a record/documentation

in the form of comments in the source code.

Time spent (in minutes): 10

8. Validation
We performed manual testing of the changed functionality of merge button. We tested with several inputs.

Following are the test results on some of the test cases.

Step # Description Rationale

1 We performed vigorous manual testing for this

change request.

To test the behavior of the changed system.

1 Test case defined: merge on [Parnas'94].pdf

Inputs: 1-4,2-3,6-9,7-8

Expected output: pages 1, 2, 3, 4, 6, 7, 8, 9 in

the output pdf

We saw this regular behavior in the generated

pdf file.

The test passed.

2 Test case defined: merge on [Parnas'94].pdf

Inputs: 2-4,5-6,7-9,6-9

Expected output: pages 2, 3, 4, 5, 6, 7, 8, 9 in

the output pdf

We observed that the output pdf has required

expected pages in it. The test passed.

Time spent (in minutes): 30

9. Timing
Summarize the time spent on each phase.

Phase Name Time (in

minutes)

Concept

location

250

Impact Analysis 100

Prefactoring 0

Actualization 150

Postfactoring 10

Verification 30

Total 540

10. Reverse engineering
Create a UML sequence diagram (or more if needed) corresponding to the main object interactions affected

by your change.

Create a partial UML class diagram of the classes visited while navigating through the code. Include the

associations between classes (e.g., inheritance, aggregations, compositions, etc.), as well as the important

fields and methods of each class that you learn about. The diagram may have disconnected components.

Use the UML tool of your preference. When a significant fact about a class or method is learned, indicate it

via annotations on the diagram. For each change request, start with the diagram produced in the

previous change request. For the first, you will start from scratch.

11. Conclusions

For this change request, the concept location was relatively harder because the error was caused by a

module that was not from the code base itself and it was imported. We identified two possible approaches

to solve this error. We spent over three days (4-5 hours a day) to implement the change request using

approach 1 that seemed easier and more logical. However, we could not solve the issue with approach 1

because this approach introduced some bugs that could not be solved within the deadline.

Therefore, we explored approach 2 in which the changes were only in one module ConversionUtils and

the changes were more in terms of LoCs as compared to approach 1. This approach took over 3 to 4 hours

to solve the issue in merge module regarding overlapping page ranges.

Concept location, impact analysis, actualization was done using InstaSearch plugin in Eclipse IDE.

Classes and methods changed for approach 1 that failed:

• PdfMergeInputMod class added in the merge module (org.pdfsam.merge)

• Org.pdfsam.merge.MergeParametersBuilder

• Org.pdfsam.merge.MergeSelectionPane

Classes and methods changed for approach 2 that succeeded:

• Changed ConversionUtils class in org.pdfsam.support.params module

• Added a method public static Set<PageRange> toNewPageRangeSet(Set<PageRange>

pageRangeSet) that removes the overlapping pages ranges before calling the external module
org.sejda.model.input.PdfMergeInput.

