
Change request log

1. Team
gitrams

2. Change Request

Change Request ID: #1 (PDFsam)

Description of the change request: In the Alternate Mix and Merge modules of PDFsam add two new buttons

“Move Top” and “Move Bottom” to allow the user to move a selected document to the top and bottom of the

list.

3. Concept Location

• IDE Features used: InstaSearch for searching the relevant keywords such as ‘Move Up’ that had

similar functionality that we wanted to implement.

• Queries used when searching: ‘Move Up’ and ‘Move Down’

• Interactions with the system: Split and Merge page of PDFsam

• Classes visited: SelectionTableToolbar, MultipleSelectionAndFocus, MoveType

• The first class found to be changed (this is when concept location ends): SelectionTableToolbar

Step # Description Rationale

1 We compiled and ran PDFsam v3.3.5

2 We interacted with split and merge function of

PDFsam to understand basic move up and

down features.

To get familiar with the existing features such

as Move Up and Move Down, that had similar

functionality to what we wanted to implement

We identified the elements we had to change

and add to implement the change request.

3 We searched for "Move Up" using the

InstaSearch plugin installed in Eclipse

Oxygen2

Because we wanted to add Move Top button

beside the Move Up button.

4 From over 10 results, outputted we clicked on

following classes SelectionTableToolbar,

MultipleSelectionAndFocus, MoveType. The

class was inspected using the Eclipse IDE

We reasoned that we can add buttons called

'Move Top' and 'Move Bottom' in the same

class.

5 We went through the class MoveType that was

a dependency of SelectionTableToolbar. We

noticed that the Move Top and Move Bottom

was already implemented but was not enabled

in v3.3.5

We noticed that the public enum MoveType {}

implemented Move Up functionality.

6 We decided to add two more classes

MoveTopButton and MoveBottomButton to

the SelectionTableToolbar to enable the

already written Move Top and Bottom

functionality

Instead of implementing those buttons from

scratch we decided to use the already written

piece of code from public enum MoveType {}.

7 The methods will require us to add two more

arguments to getItems().addAll() inside

SelectionTableToolbar corresponding to the

newly added buttons.

We confirmed that the class

SelectionTableToolbar had to be modified.

 Time spent (in minutes): 70

4. Impact Analysis
Use the table below to describe each step you follow when performing impact analysis for this change

request. Include as many details as possible, including why classes are visited or why they are discarded

from the estimated impact set.

Do not take the impact analysis of your changes lightly. Remember that any small change in the code could

lead to large changes in the behavior of the system. Follow the impact analysis process covered in the class.

Describe in details how you followed this process in the change request log. Provide details on how and why

you finished the impact analysis process.

Step # Description Rationale

1 We inspected the class SelectionTableToolbar To track the classes that could be impacted by

the change.

2 We took the help of the UML plugin to locate

affected classes

UML tool can locate related classes easily by

visiting all the classes in the project.

 Time spent (in minutes): 20

5. Actualization
Use the table below to describe each step you followed when changing the code. Include as many details as

possible, including why classes/methods were modified, added, removed, renamed, etc.

Step # Description Rationale

1 We decided to add two more classes

MoveTopButton and MoveBottomButton to the

SelectionTableToolbar and enable the already

written Move Top and Bottom functionality

Instead of implementing those buttons from

scratch we decided to use the already written

piece of code.

2 We added two more arguments to

getItems().addAll() inside

SelectionTableToolbar corresponding to the

newly added buttons.

We committed the incremental changes to

github just to make sure we can have a log

that might help us go back if needed.

Time spent (in minutes): 40

6. Postfactoring (optional)

For this change request we did not require to postfactor any part of the code base except for adding a few

comments. This is because the Move Top and Move Bottom functionalities were similar to the Move Up and

Down buttons’ functionalities that were already present in the code base.

Step # Description Rationale

1 Added comments regarding the newly

implemented buttons.

We wanted to keep a record/documentation

in the form of comments in the source code.

Time spent (in minutes): 10

7. Validation
Use the table below to describe any validation activity (e.g., testing, code inspections, etc.) you performed

for this change request. Include the description of each test case, the result (pass/fail) and its rationale.

Step # Description Rationale

1 We performed manual testing. To validate the functionality of the new

features.

2 We started the AlternateMix module of PDFsam

and added a lot of documents, making sure

more than 2 documents are added.

At least more than two documents should be

loaded to verify correct functionality

3 We clicked on any random document in the list

of loaded documents and selected “Move to

Top”

The document moved to the top of the list,

demonstrating correct functionality.

4 We clicked on any random document in the list

of loaded documents and selected “Move to

Bottom”

The document moved to the bottom of the list,

demonstrating correct functionality.

5 We selected a document which was already at

the top of the list and clicked “Move to Top”

The document stayed at its place, ensuring

correct behavior for corner cases too.

6 We selected a document which was already at

the bottom of the list and clicked “Move to

Bottom”

The document stayed at its place, ensuring

correct behavior for corner cases too.

Time spent (in minutes): 20

8. Timing
Summarize the time spent on each phase.

Phase Name Time (in

minutes)

Concept

location

70

Impact Analysis 20

Prefactoring 0

Actualization 40

Postfactoring 10

Verification 20

Total 160

9. Reverse engineering
Create a UML sequence diagram (or more if needed) corresponding to the main object interactions affected

by your change.

Create a partial UML class diagram of the classes visited while navigating through the code. Include the

associations between classes (e.g., inheritance, aggregations, compositions, etc.), as well as the important

fields and methods of each class that you learn about. The diagram may have disconnected components.

Use the UML tool of your preference. When a significant fact about a class or method is learned, indicate it

via annotations on the diagram. For each change request, start with the diagram produced in the

previous change request. For the first, you will start from scratch.

10. Conclusions

For this change, the hardest part was building the software. We faced several difficulties but were finally

able to build it. Concept location was not very hard as we could locate the target class easily. Actualization

was also not tough as most of the code was already there, we just had to enable it.

Classes and methods changed:

• pdfsam-fx/src/main/java/org/pdfsam/ui/selection/multiple/SelectionTableToolbar.java

o SelectionTableToolbar(String ownerModule, boolean canMove)

o MoveTopButton (new class added)

o MoveBottomButton (new class added)

