
Change request log

1. Team
gitrams

2. Change Request

Change Request ID: #1 (JEdit)

Description of the change request: "In the File » Recent Files main menu of JEdit, the text box on top of the

recent files list allows to highlight recent files names that match with a given string. The string in the text

box should match all the files that contain it anywhere in their name. However, the highlight works only

when the string matches the beginning of a file name. You are requested to modify this feature so that the

highlight occurs for the cases when the string is contained anywhere in the file name."

3. Concept Location

• IDE Features used: InstaSearch and basic Search in Eclipse

• Queries used when searching: "Recent Files"

• Interactions with the system:

• Classes visited:

• The first class found to be changed (this is when concept location ends):

Step # Description Rationale

1 We compiled and ran JEdit-5-4-0

2 We interacted with Recent File Menu function

of JEdit to understand how an input keyword

is searched in the recent files names.

To get familiar with the existing features such

as keyword search in Recent Files Menu. This

is because, we wanted to change this

functionality to search the keyword in the

entire name and not just at the beginning of

the file name.

3 We searched for "Recent Files" using the

InstaSearch plugin installed in Eclipse

Oxygen2

Because we wanted to modify the keyword

search functionality under recent files menu.

4 We received 2 relevant results: the classes

were RecentFilesProvider and

GeneralOptionPane. The classes were

inspected using the Eclipse IDE.

We wanted to find the place in the code

where search was implemented.

5 We went through the class
RecentFilesProvider and

GeneralOptionPane to find out that search

was implemented under public void

update(JMenu menu) method of the
RecentFilesProvider class.

6 We noted that GeneralOptionPane Class was

not relevant to our change request.

Because it was related to recent files menu

panel.

7 We located the search functionality in the

RecentFilesProvider class and decided to

modify the 'regex' string that carried out the

keyword search.

Changing the regex string would allow

keyword to be searched within the entire

name of the file.

8 This will require us to add another wild

character (*) before the regex string.

We confirmed that the class

RecentFilesProvider had to be modified.

 Time spent (in minutes): 65

4. Impact Analysis
Use the table below to describe each step you follow when performing impact analysis for this change

request. Include as many details as possible, including why classes are visited or why they are discarded

from the estimated impact set.

Do not take the impact analysis of your changes lightly. Remember that any small change in the code could

lead to large changes in the behavior of the system. Follow the impact analysis process covered in the class.

Describe in details how you followed this process in the change request log. Provide details on how and why

you finished the impact analysis process.

Step # Description Rationale

1 We looked for all classes related to

RelatedFilesProvider class

To find classes that could be impacted by the

change.

2 We inspected the interface

DynamicMenuProvider and the class

EnhancedMenu.

We realized these classes need not to be

changed because the behavior of our target

class was not changing these.

3

4

 Time spent (in minutes): 20

5. Actualization
Use the table below to describe each step you followed when changing the code. Include as many details as

possible, including why classes/methods were modified, added, removed, renamed, etc.

Step # Description Rationale

1 We decided to add another wild character (*)

before the 'regex' string inside the public void

update() method in the
RecentFilesProvider class.

This will allow a search hit if the keyword

appears anywhere within the file name to be

searched.

2

Time spent (in minutes): 20

6. Postfactoring (optional)

For this change request we did not require to postfactor any part of the code base except for adding a few

comments. The changes that were made for this change request were isolated, few, and had very little

impact on other classes. So postfactoring was not required except for adding comments for the purspose of

documentation.

Step # Description Rationale

1 Added comments regarding the newly

implemented change

We wanted to keep a record/documentation

in the form of comments in the source code.

Time spent (in minutes): 10

7. Validation
Use the table below to describe any validation activity (e.g., testing, code inspections, etc.) you performed

for this change request. Include the description of each test case, the result (pass/fail) and its rationale.

Step # Description Rationale

1 We performed manual testing by running the

built software.

All the manual tests passed.

2 We opened a bunch of files to populate the

recent files history.

Then go to the File menu, select Recent Files.

Search for a string.

If the highlighted filenames match the string,

where the string is contained anywhere in the

file name, the test is passed.

Time spent (in minutes): 15

8. Timing
Summarize the time spent on each phase.

Phase Name Time (in

minutes)

Concept

location

65

Impact Analysis 20

Prefactoring 0

Actualization 20

Postfactoring 10

Verification 15

Total 130

9. Reverse engineering
Create a UML sequence diagram (or more if needed) corresponding to the main object interactions affected

by your change.

Create a partial UML class diagram of the classes visited while navigating through the code. Include the

associations between classes (e.g., inheritance, aggregations, compositions, etc.), as well as the important

fields and methods of each class that you learn about. The diagram may have disconnected components.

Use the UML tool of your preference. When a significant fact about a class or method is learned, indicate it

via annotations on the diagram. For each change request, start with the diagram produced in the

previous change request. For the first, you will start from scratch.

10. Conclusions

For this change, building and setting up the project in Eclipse was the hardest. The code was getting built

fine on the command line (using the ant command) but it was not building in Eclipse. That took most of the

time. Secondly the concept location was a bit tough too, because I did it for the first time. Testing was

performed manually because it was difficult to add a test suite.

Classes and methods changed:

org/gjt/sp/jedit/memu/RecentFilesProvider

void update(JMenu menu)

