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Abstract—Many multi-modal human computer interaction
(HCI) systems interact with users in real-time by estimating
the user’s pose. Generally, they estimate human poses using
depth sensors such as the Microsoft Kinect. For multi-modal HCI
interfaces to gain traction in the real world, however, it would
be better for pose estimation to be based on data from RGB
cameras, which are more common and less expensive than depth
sensors. This has motivated research into pose estimation from
RGB images. Convolutional Neural Networks (CNNs) represent
the state-of-the-art in this literature, for example [1], [2], [9],
[13], [14], and [15]. These systems estimate 2D human poses
from RGB images. A problem with current CNN-based pose
estimators is that they require large amounts of labeled data
for training. If the goal is to train an RGB pose estimator
for a new domain, the cost of collecting and more importantly
labeling data can be prohibitive. A common solution is to train
on publicly available pose data sets, but then the trained system
is not tailored to the domain. We propose using RGB+D sensors
to collect domain-specific data in the lab, and then training
the RGB pose estimator using skeletons automatically extracted
from the RGB+D data. This paper presents a case study of
adapting the RMPE pose estimation network [2] to the domain
of the DARPA Communicating with Computers (CWC) program
[3], as represented by the EGGNOG data set [8]. We chose
RMPE because it predicts both joint locations and Part Affinity
Fields (PAFs) in real-time. Our adaptation of RMPE trained on
automatically-labeled data outperforms the original RMPE on
the EGGNOG data set.

Index Terms—HCI, human pose estimation, Microsoft Kinect,
Communicating with Computers

I. INTRODUCTION

Many multi-modal human computer interaction (HCI) sys-
tems interact with users in real-time in part by estimating
the user’s pose. For example, Narayana et al. [3] describe
a multi-modal interface for an avatar, in which users gesture
and/or speak to direct an avatar. As shown in Figure 1, the
virtual agent avatar perceives the user’s motions by estimating
their pose over time. The agent analyzes the predicted joint
locations (marked in yellow), and matches them to known
gestures (or to no gesture) and responds appropriately. In this
way, pose estimation facilitates gesture comprehension, which
in turn helps the system achieve multi-modal communication
via gestures and speech.

This work was supported by DARPA and ARO through grant W911NF-
15-1-0459.

Fig. 1. Communicating with Computers program: multi-modal communica-
tion between user and agent (inset)

The system described by Narayana et al. exploits body poses
(a.k.a. skeletons) produced by the Microsoft Kinect sensor.
This limits the domains it can be applied to, since most users
do not own Kinects. The next step is to develop a multi-modal
interface that extracts pose information from RGB cameras,
which are already cheap and ubiquitous.

The state of the art technique for pose estimation from
RGB images is the convolutional neural networks; examples
include [1], [2], [9], [13], [14], and [15]. In particular we
focus on RMPE [2], which is widely cited and real-time.
RMPE is a multi-stage CNN that extracts the image positions
of body joints (elbows, wrists, etc.) as well as part affinity
fields representing the limbs that connect joints (e.g. the arm
between the elbow and wrist).

One challenge in adapting RMPE (or any CNN) to a new
domain is collecting the training data. Generally, pose estima-
tor such as RMPE are trained on manually annotated data sets
such as COCO [5], [6], and [7]. Manual labeling is an expen-
sive process, however, and prone to errors and inconsistencies
in label definitions. An alternative is to collect training images
with co-registered depth images (e.g. with Microsoft Kinect)
and use existing pose-from-depth algorithms to automatically
label the joint positions. This approach is inexpensive and
quick, and makes it easy to collect large amounts of labeled
training images with consistent label definitions. However, it
potentially introduces errors into the training data, since the
pose-from-depth algorithms make mistakes and depth data can
be noisy. It is an open question how well RMPE will perform978-1-7281-0554-3/19/$31.00 ©2019 IEEE



when trained on automatically-extracted skeletons.
Figure 2 illustrates the adaptation scenario. The idea is to

collect data with a Kinect in the lab (as shown in the upper
left) and to train RMPE to label RGB images (bottom left)
based on automatically-generated skeletons. Once the network
is trained, it can be used outside the lab to estimate poses from
traditional RGB cameras (right side of Figure 2). The final
application therefore only requires a laptop and its built-in
camera.

Kinect V2 Extracted Poses RMPE Estimated Poses

Kinect V2

3D to 2D
mapping RMPE Network

Laptop + Camera

Lab Settings (Kinect) Real World (Camera)

Kinect Camera

Fig. 2. Lab setup uses the Kinect v2 for training versus the real world
application that uses a traditional RGB camera.

This paper is therefore a case study in adapting RMPE to
new domains. In this case, the domain is multi-modal HCI, as
represented by the EGGNOG [8] data set. The first question
is whether RMPE can be retrained with minimal human effort
by collecting automatically-labeled data from a Microsoft
Kinect v2, and if it can whether the result will outperform
the standard, off-the-shelf RMPE trained on COCO [5]. Since
the answer to this question turns out to be yes, RMPE can
be retrained using automatically-labeled data and doing so
does improve performance on the target domain, the remaining
questions concern how best to configure RMPE for the said
domain. In particular, we investigate (1) the use of spatial
dropout, (2) how many stages are necessary, (3) how many
training images are needed and (4) how many training subjects
are needed.

II. LITERATURE REVIEW

Pose estimation from RGB images is an active area of
research with numerous practical applications in areas such as
HCI, motion capture, and augmented reality [3], [24], and [25].
Prior to the advent of CNNs, pose estimation techniques were
based on pictorial structures [16]–[19] and graphical models

[10], [20]. These methods predicted joint locations from hand-
crafted features. Recently, CNN-based methods have been
shown to regularly outperform these classical methods by large
margins [1], [2], [9], [11]–[13]. Toshev et al. [9], formulated
pose estimation as regression to the coordinates of joints
using a generic CNN. Joint relations were learned instead of
designed by hand, making the network generalizable. Building
on this regression concept, Tompson et al. [4], [21] and Newell
et al. [13] formulated CNNs that regress input images to
confidence maps depicting the probabilities of the presence
of joints. Wei et al. [1] used a multi-stage CNN to regress
with larger receptive fields, allowing their network to learn
stronger spatial dependencies over successive stages. More
recently, Chen et al. [14] introduced a two-staged architecture
consisting of GlobalNet and RefineNet. Xiao et al. [15] present
a simple and effective architecture based on a ResNet [23]
backbone network with the addition of deconvolution layers
to predict confidence maps. All of these networks are based
on the fundamental idea of regressing images to confidence
maps.

The Convolutional Pose Machine (CPM) [1] and RMPE
[2] have multi-staged CNNs that regress images to confidence
maps depicting joint locations. The predictions of these net-
works are refined over successive stages as their receptive
fields increase in deeper stages. Recent work [1], [2], [13],
[14], and [21] suggests that multi-stage CNNs learn more
expressive features and implicit spatial dependencies between
joints directly from large-scale data and perform better when
compared to classical methods. CPM employs a top-down
approach wherein a person detector outputs a detection that is
fed to a single-person pose estimation network. The runtime
of the top-down approach is proportional to the number of
people in the image. In contrast, RMPE employs a bottom-up
approach wherein a single network detects and estimates joints
for all the people in the image. RMPE uses ‘simultaneous
detection and association.’ The network predicts confidence
maps for joint locations followed by associating PAFs that
encode part-to-part relations. Cao et al. show that the runtime
of RMPE with its bottom-up approach increases relatively
slowly with respect to the number of persons in the image.

In this paper, we adopt the common pose estimation formu-
lation which regresses image to confidence maps. In particular,
we concentrate directly on the pose machines published by
CMU (CPM [1] and RMPE [2]) that won the COCO 2016
Keypoints Challenge. We analyze RMPE on a new large-
scale data set (EGGNOG [8]). We contribute by retraining and
evaluating RMPE on EGGNOG data set and by providing an
analysis of the RMPE adaptation process to a specific domain.

III. ADAPTING AND RETRAINING RMPE

Our goal is to determine whether RMPE can be retrained for
a specific domain without manually labeling data, and if doing
so produces a network that outperforms the standard RMPE
trained on a general-purpose data set. This section describes
how RMPE is adapted and retrained for the EGGNOG domain.



Fig. 3. General architecture of our adapted RMPE for CWC domain: two-staged RMPE inspired by [2]

Later, it compares the relative performance of the original and
retrained versions of RMPE.

A. Adapting RMPE for EGGNOG

Ideally, we would retrain RMPE without changing its archi-
tecture in any way, to create to perfect apples-to-apples com-
parison in subsection C. Unfortunately, differences between
the COCO and EGGNOG data sets require small architectural
changes. Users in EGGNOG are standing behind a table; their
legs and feet are not visible. We therefore train RMPE to detect
the 10 upper body joints that are common to the Microsoft
skeleton and the COCO data labels, meaning that our adapted
RMPE predicts 11 confidence maps (10 for joints and one for
background) and 18 PAF maps for connectors formed by the
10 joints. In contrast, standard RMPE predicts 19 confidence
maps and 38 PAF maps based on the manually annotated
labels in the COCO data set. Therefore we change the final
convolutional layer at every stage of RMPE to predict 11
feature maps and 18 PAF maps. We also added spatial dropout
layers between convolutional layers to avoid over-fitting, and
limited the depth of the architecture to two stages, for reasons
that will be explained in Section IV.

Figure 3 shows our modified RMPE. The details are similar
to those in [2], but are included here for completeness. RGB
images are fed through the VGG feature extractor block [22]
to generate feature maps F. These feature maps (F) are fed as
input to both the branches of stage 1. The first stage outputs
confidence maps S1 = ρ1(F) and PAF maps L1 = φ1(F)
where ρ1 and φ1 are the CNNs from branch 1 and 2 of the
first stage. The structure of convolutional block for every stage
after stage 2 is identical to stage 2 block structure. For each
stage after stage 1, the predictions from both the branches of
the previous stage and VGG feature maps F are concatenated
and fed as input to the next stage such that,

St = ρt(F,St−1,Lt−1),∀t ≥ 2, (1)

Lt = φt(F,St−1,Lt−1),∀t ≥ 2, (2)

where, ρt and φt are the CNNs from branch 1 and 2 of
stage t. This formulation is similar to what is proposed in [2].

Replicating the loss functions from the original RMPE, we
use L2 loss function at the end of each stage to enforce inter-
mediate supervision. For each stage, the losses are calculated
at the end of each branch between predicted feature maps and
ground truth feature maps. For stage t the losses are calculated
as follows,

f t
S =

J∑
j=1

‖St
j − S∗j ‖22, (3)

f t
L =

C∑
c=1

‖Lt
c − L∗c‖22, (4)

where S∗j and L∗c are the ground truth confidence maps and
PAF maps respectively. Process to generate ground truths for
EGGNOG is discussed in the next subsection. Total loss f of
the network is sum of all the losses at each stage and each
branch defined by,

f =
T∑

t=1

(f t
S + f t

L), (5)

where, ftS and ftL are the losses at stage t for the confidence
map predictor and PAF predictor branches respectively.

B. Experimental Methodology

The EGGNOG [8] data set has approximately 300K RGB
image frames in 360 trials of 40 human subjects, for a total
of 8 hours of data. It was recorded using a Microsoft Kinect
v2 sensor, and includes 3D skeletons for 25 joints (and 2D
projections thereof) extracted from the RGB+D data. The
experiments conducted in this thesis use 10 joints: head, spine
shoulder, left shoulder, left elbow, left wrist, right shoulder,
right elbow, right wrist, left hip, and right hip. We divide
the EGGNOG data set in training, validation, and testing sets
containing 28, 8, and 4 subjects respectively.

The EGGNOG image frames are 1920 x 1080 pixels. We
remove 240 pixel columns from the left and right sides, since
EGGNOG subjects stay near the center of the frames. We
reduce the image scale by a factor of 4.5 to get a 320× 240
image. This size is close to what the original RMPE uses
(368× 368).



We use the algorithms specified in [2] to generate the ground
truth confidence maps S∗ and PAF maps L∗. The confidence
maps are Gaussian in 2D pixel space representing the belief
that a joint occurs at a specific pixel location. To generate the
confidence map for joint j, we use the 2D joint annotations
(xj ∈ R2) from Kinect data after transforming them to a 40
x 30 ground truth space. The first row of Figure 5 shows
the confidence maps for right elbow and right wrist overlaid
on down-sampled input image. Confidence map values range
from 0 to 1 with 0 meaning no belief and 1 meaning complete
belief that a particular joint is present at that pixel. The value
of confidence map for joint j at pixel location p ∈ R2 is defined
by,

S∗j (p) = exp(−α× ‖p− xj‖22), (6)

where, α determines the spread of the Gaussian belief map.

Fig. 4. Input RGB im-
age (320 × 240 × 3)

Fig. 5. Ground truth (40×30): 1st row - confidence
maps for left (since images flipped horizontally)
elbow and left wrist; 2nd row - PAF maps (x and
y) for joint connector from left elbow to left wrist

PAF maps are generated for all the joint connectors c from
the set of joint connectors C. Consider a joint connector c
formed by connecting joint j1 at location xj1 to joint j2 at
location xj2 . The value of PAF map for a joint connector c at
pixel location p ∈ R2 is defined by,

L∗c(p) =

{
v if p is on joint connector c.
0 otherwise.

(7)

Here, v is a unit vector from joint j1 to j2 defined by,

v = (xj2 − xj1)/‖xj2 − xj1‖2, (8)

A point p is considered to be on the joint connector c if it
follows

0 ≤ v · (p− xj1) ≤ lc and |v⊥ · (p− xj1)| ≤ σl. (9)

Here, lc = ‖xj2 − xj1‖2 is the length of the joint connector
from joint j1 to j2 and σl is the width of the same connector
in pixels.

We augment the RGB images by randomly choosing an
angle of rotation from [-12°, +12°], scaling factor from [0.8,
1.2], horizontal flipping probability of 0.5, and translation
value (in number of pixels) along horizontal and vertical
direction from [-40, 40]. While generating the joint confidence

maps and PAF maps for EGGNOG, we selected α = 2.25 and
limb width (σl) = 0.75 in equation 6 and 7 respectively.

The network is trained with the same parameters as in [2].
The base learning rate is 4× 10−5, the momentum factor for
Stochastic Gradient Descent (SGD) optimizer is 0.9, and the
weight decay factor is 5 × 10−4. For the EGGNOG data set
the network converges after approximately 100 epochs.

Experiments are evaluated with Percentage of Correct Key-
points (PCK) metric. For PCK, a keypoint is considered to
be correct if its predicted location falls within a normalized
distance of its ground truth location. As proposed in [10], the
normalized distance is defined using the formula α·max(h,w),
where h and w are respectively the height and width of
the tightest bounding box that encloses all the ground truth
keypoints of the test sample. We vary α from 0 to 0.5 because
for α > 0.5 the PCK vs. normalized distance plot saturates to
PCK ≈ 1.0.

IV. EVALUATING RMPE TRAINED ON
AUTOMATICALLY-LABELLED DATA

The primary goal of this experiment is to test the feasibility
of re-training RMPE using automatically-extracted skeleton
data. Hand-labeling RGB images is expensive; if we can
collect RGB+D images and use the automatically-extracted
skeletons as training data, the labor cost of retraining RMPE
drops significantly. The risk, however, is that errors in the
training signal could degrade RMPE’s performance. To test
this, we compare the retrained RMPE’s performance to the
performance of the original RMPE trained on a broader
domain but with hand-labeled data.

The network for this experiment shown in Fig. 3 consists of
a two-staged RMPE network predicting both the joint locations
and PAFs. Each stage iteratively refines the predicted joint
locations. The training, validation and test sets are drawn
from the EGGNOG data set [8]. The training set consists of
40K images evenly distributed among 28 subjects while the
validation set contains 4K images evenly distributed among
different 8 subjects. We reserve 4 subjects for the test set.
The modified RMPE network predicts confidence maps for 10
joints listed in the experimental methodology subsection.

We compare the performance of the original RMPE [2]
and our retrained model using two metrics, the Percentage of
Correct Keypoints at a normalized distance of 0.1 (PCK@0.1)
and the Area Under the Curve (AUC) calculated for the ‘Mean
PCK versus Normalized distance’ plot.

Figure 6 compares the performance of the original and
automatically-trained systems by plotting the average percent
of correct keypoints (PCK) as a function of the threshold used
to determine correctness. The threshold is a percentage of
the shorter side of the bounding rectangle that contains the
subject. At large values of the threshold (above 0.3, or 30%
of the bounding window size), both systems get 100% of the
keypoints correct. This is because the threshold is so lenient
that joint positions almost anywhere near the body qualify
as correct. At lower thresholds, however, the automatically-
trained version of RMPE (shown in blue) consistently outper-
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forms the original (shown in red). Since the horizontal axis
ranges from 0 to 0.5, the graph of a perfect system would
yield an area under the curve (AUC) of 0.5. The retrained
RMPE has an AUC of 0.4363, whereas the original RMPE
has an AUC of only 0.4133.

Figure 7 compares the two systems on a joint-by-joint basis,
at a fixed distance threshold of 0.1. We see that our retrained
version outperforms the original for 8 out of the 10 joints.
The performance of two systems are essentially tied for one
joint (right elbow) and the original RMPE is best for 1 joint
(spine shoulder). The retrained system is therefore performing
broadly better. The difference in performance is particularly
noticeable for the hips; this may be because of inconsistency
in how hips were labeled in COCO, or because of a definitional
mismatch as to where the hips are.

V. ADDITIONAL EXPERIMENTS AND EVALUATIONS

Having shown that RMPE can be trained using
automatically-generated skeletons, we needed to find
the best parameter configuration for retraining RMPE on a
tightly controlled data set. In particular, we looked at spatial
dropout, the number of RMPE network stages, the number of
training subjects, and the number of training samples.

A. Experiments with Spatial Dropout

The original version of RMPE was trained without drop-
outs. We added drop-outs when we modified RMPE to avoid
over-fitting. We observed in early experiments with our system
that adding spatial dropout layers with a dropout rate of 0.2 af-
ter each convolutional layer reduced over-fitting on EGGNOG.
The experiments in this section analyze how different dropout
strategies affect network performance.

We use spatial dropout regularization formulated recently
by Tompson et al. [4] to improve network performance while
solving pose estimation. They argue that standard dropout
techniques do not prevent over-fitting because the pixels within
a feature map are so strongly correlated. To avoid this problem
they introduce spatial dropout where activations of entire
feature map are randomly set to zero. Similar to their results,
we observe improvements in performance of our network
with addition of spatial dropout. For these experiments, we

apply spatial dropout with a certain probability after every
convolutional layer in the stages of RMPE (shown in Fig. 3)
to search for the best dropout strategy in the context of
EGGNOG.

Figure 8 and Figure 9 show the mean PCK scores for
five trials (plotted with red dots) of experiments with various
spatial dropout strategies. With a spatial dropout rate of 0.0,
the AUC for PCK@0.1 is 0.8462. It increases to 0.8786 with
a dropout rate of 0.2. If we further increase the dropout
rate to 0.3, the mean PCK@0.1 drops down to 0.8544. We
experimented with other variations of dropout and concluded
that for the EGGNOG data a dropout of 0.2 along the layers
gave the best performance.
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B. Experiments with the Number of Stages

RMPE is a multi-stage architecture, where each stage refines
the results of the preceding stage. This experiment seeks to
understand how many stages are needed in the context of
EGGNOG. Cao et al. in [2] report that RMPE performance
improves monotonically with the number of stages, but that
the improvement going from a one-staged network to a two-
staged network is bigger than the improvements gained by
adding additional layers beyond the second.

Using the same training set, network parameters, and learn-
ing parameters as described above, this experiment changes
the number of stages and analyzes the effect on PCK scores.
For each experiment we run five trials to get central tendency
of PCK scores.

Fig. 10 shows mean PCK for 10 joints against the nor-
malized distance for six experiments with number of stages
varying from 1 to 6. Fig. 11 shows mean PCK@0.1 with five
trials of each experiment.

The mean PCK score for one-staged networks is lower than
the PCK scores for networks with more than one stage. Mean
PCK@0.1 for one-staged network is 0.8320 (mean over five
trials). This score increases to 0.8745 for two-staged network.
However, there is no significant improvement in performance
when additional stages beyond the second are added, unlike
what was reported in the original RMPE paper. We analyzed
the training times of these experiments on Nvidia TITAN V
12GB GPU. The average training epoch time for a one-staged
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Fig. 11. Mean PCK@0.1 w.r.t. num-
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network is 13:09 minutes. Adding one more stage increases
the average epoch time to 22:02 minutes. As we increase
the number of stages to six, we observe that the addition of
each stage increases the training time by only a small amount.
suggesting that the time increases are sub-linear.

We conclude that for the EGGNOG data set, a two-staged
network is a good choice because 1) it has a better PCK@0.1
score than a one-staged network and 2) two-stage networks
have shorter training times and fewer convolutional layers than
networks with more stages, although the increase in training
time is not as large as we originally expected.

C. Experiments with the Number of Training Samples

These experiments study how the of number of EGGNOG
training samples affects PCK performance. Cao et al. trained
RMPE [2] on the COCO data set which contains over 100K
hand-labeled images. EGGNOG has approximately 300K in-
stances of automatically annotated images. We study how
many of these images are actually needed to retrain RMPE.

Using the same network and learning parameters as in the
previous experiments, we varied the number of training sam-
ples. In particular, the distribution of training and validation
samples for conducted experiments was 650:63, 1.25K:125,
2.5K:250, 5K:500, 10K:1K, 20K:2K, 40K:4K, and 80K:8K.
For each experiment we ran five trials to get a central tendency
of PCK scores.
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Fig. 13. Mean PCK@0.1 w.r.t. number
of training samples

Fig. 10 shows the mean PCK for 10 joints against the
normalized distance for the experiments with varying number

of training samples. Fig. 11 shows mean PCK@0.1 with five
trials of each experiment. With 40K training images, we get
a mean PCK@0.1 of 0.8745. With 80K training images, the
mean PCK@0.1 improves slightly to 0.8784. This suggests
that there are only marginal benefits to using the entire
EGGNOG data set for training. However, the mean PCK@0.1
deteriorates rapidly if the number of training samples is below
2K.

Unsurprisingly, training times increase as the number of
training samples is increased. Average epoch times are in the
orders of a few minutes for training sets with less than 10K
images and in the order of hours for training sets with greater
than 80K images. Our experiments suggest that for EGGNOG,
the training set should be from 20K to 40K for a two-staged
network.

D. Experiments with the Number of Training Subjects

The number of training samples is one measure of the size of
a training set; the number of test subjects is another. In general,
it is easier to collect more images per subject than to get more
subjects. These experiments address the question of how many
training subjects are needed to make RMPE perform well on
EGGNOG. EGGNOG overall has 40 subjects, divided into the
train, validation, and test sets. These experiments measure how
many subjects are needed.

We vary the number of training subjects from 4 to 28.
For each number of subjects we conducted five trials, with
each trial having a different subset of training and validation
subjects.
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Figure 14 shows the mean PCK for 10 joints while varying
number of training subjects. Figure 15 is mean PCK@0.1 for
10 joints with five trials of each experiment.

We see in Figure 14 and Figure 15 that performance
degrades as the number of training subjects is decreased.
PCK@0.1 is 0.7722 with 4 training subjects and 0.8745 with
28 training subjects, although the difference between 16 and
28 subjects is small. We argue that with fewer training subjects
the network may over-fit to the physical appearance of training
subjects and therefore not generalize as well to the test set.
We conclude that for EGGNOG the network should be trained
on at least 16 subjects.



VI. CONCLUSION AND DISCUSSION

We present a case study on adapting and retraining a popular
CNN-based pose estimator (RMPE [2]) to the EGGNOG data
set. By tailoring RMPE to the HCI domain represented by
the EGGNOG data set, we get better performance than if we
use the pre-trained (on COCO) version of RMPE. Experiments
also reveal that the EGGNOG domain only needs a two-staged
RMPE to achieve strong performance, and the addition of
more stages increases overhead without significantly improv-
ing performance. This paper shows too that spatial dropout
regularization improves performance, even though it was not
used in the original version of RMPE. Further, our analysis
of retrained RMPE on EGGNOG shows that the training set
should contain at least 16 human subjects and 40K training
images in order to generalize.
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